Banking Limits on Foreign Holdings Disentangling the Portfolio Balance Channel

(Exchange Rate Effects of Financial Regulation)

Pamela Cardozo Fredy Gamboa David Perez Mauricio Villamizar¹

February 19, 2019

¹All authors work at the Central Bank of Colombia except David Perez who works at Universidad de los Andes, Colombia

Research Objective

Analyze the effects of financial constraints on the exchange rate.

- Construct a two-period model where constraints inhibit capital flows
 - Departures from UIP explain the effects of sterilized intervention
- Empirically test this channel by using a sharp policy discontinuity within Colombian regulatory banking limits
 - Effects of limits banking limits on foreign holdings

Findings: Effects on the exchange rate are small short-lived, but magnified in periods of Central Bank intervention

Motivation

- The "corner or bipolar hypothesis" began to lose popularity after the East Asia crises (1997-98) and the failure of Argentina's currency board (2001)
 - -Eichengreen (1994), Obstfeld and Rogoff (1995)

- Since then, many central banks have opted for monetary policy autonomy (but reluctant to relinquish control over currencies)
 - Concerted initiatives include: Smithsonian Agreement (1971), Plaza Accord (1985), Louvre Accord (1987), Chiang Mai Initiative (2000) and Pittsburg Agreement (2009)

Motivation

- The impossible trinity (trilemma) indicates that a country cannot
 - Allow for free capital flows
 - Have autonomous monetary policy
 - Adopt a fixed or managed exchange rate

Policymakers can only regain control of the exchange rate if they abandon monetary policy or enact capital controls

- In the empirical literature, there is a lack of consensus regarding the effectiveness of Central Bank intervention
 - Menkhoff (2013) and Villamizar and Perez (2015): 15/25 and 16/32 studies find significant FXI effects

Financial Rigidities

Financial Rigidities: Limits on foreign exposure

- Colombian Banks have limits on foreign holdings
 - PPC -Assets minus Liabilities in USD relative to total capital (Jan 2004-Oct 2015)
- Colombian Banks are key players in COP-USD market
- When limits bind, banks are no longer indifferent between holding different currency denominated assets

Model

Two-period Small Open Economy (exogenous r^*)

- Representative household (Banks)
 - Receive exogenous endowment (A_t) and government transfer (τ_t)
 - Choose whether to save in domestic or foreign assets
 - Face limits on the amount of foreign assets
- Government (Central Bank)
 - Issues domestic debt to buy foreign assets B* (Sterilized FXI)

Findings

Multiple equilibria

- Constraints do not bind -UIP holds
 - Agents are indifferent between foreign and domestic assets
 - Exchange rate does not depend on foreign assets
- Constraints bind -UIP does not hold
 - Household wants to save in asset with higher return until limit binds
 - Exchange rate depends on
 - FX intervention
 - Regulatory limits
 - Intervention helps overcome wedge caused by departure from UIP

Maximization Problem

Households

$$\begin{array}{l} \max_{c_0,c_1,B,B^*} \quad \textit{U}(c_0,c_1) = \ln c_0 + \beta \ln c_1 \\ \text{s. t.} \quad c_0 + B + e_0 B^* = A_0 + \tau_0 \\ \quad c_1 = (1+r)B + (1+r^*)e_1 B^* + A_1 + \tau_1 \\ \underline{B} \leq \frac{e_0 B^*}{I} \leq \overline{B} \qquad \qquad \textit{where} \qquad \qquad \textit{I} \equiv \textit{A}_0 + \tau_0 + \frac{A_1 + \tau_1}{1 + r} \end{array}$$

Government

Budget is balanced through lump-sum transfers

$$au_0 \equiv B_G - e_0 B_G^* \ au_1 \equiv -(1+r)B_G + (1+r^*)e_1 B_G^*$$

We can only pin down $\frac{e_1}{e_0},$ so we assume $e_0=1$

Maximization Problem

From Household's maximization problem:

$$1+r=e_1\left(1+r^*
ight)-rac{\overline{\lambda}-\underline{\lambda}}{eta I}c_1$$

 $\overline{\lambda}$ ($\underline{\lambda}$): Lagrange multiplier of upper (lower) bound on dollar exposure

•
$$1+r < e_1 \left(1+r^*\right) \iff \overline{\lambda} > 0 \text{ and } \underline{\lambda} = 0$$

•
$$1+r>e_1\left(1+r^*\right)\iff \overline{\lambda}=0$$
 and $\underline{\lambda}>0$

Equilibrium

A competitive equilibrium in this economy consists of

- Prices $P = \{e_1, r\}$
- Allocations $X = \{c_0, c_1, B, B^*\}$
- Government policies $G = \{B_G, B_G^*\}$

such that

- lacktriangle Given P, X is a solution to the household's problem
- Markets clear

Proposition

ullet When constraints don't bind, e_1 does not depend on B_G^*

$$e_1 = rac{1+r}{1+r^*} = rac{A_1}{eta A_0 (1+r^*)}$$

When constraints bind then FX intervention affects e₁

$$e_1 = rac{1+r}{1+r^*} \left(1 \underbrace{-rac{1}{ ilde{\mathcal{B}}} - rac{(1+eta) \mathcal{A}_0}{\mathcal{B}_{\mathcal{G}}^*}}_{ ext{Wedge}}
ight) \qquad ext{for } ilde{\mathcal{B}} \in \{\overline{\mathcal{B}}, \underline{\mathcal{B}}\}$$

Empirical methodology

- Conduct a sharp RDD to study the effects of banking limits
 - Causal effects are identified in episodes of central bank intervention and non-intervention
- Findings
 - Banking limits have a short-lived effect on the exchange rate
 - Effects are greater in episodes when the central bank intervened
 - Effects on portfolio are significant (loans)

RDD

Assignment of treatment:

$$D_t = \mathbf{1} \left\{ X_t \ge x_0 \right\}$$

Average Treatment Effect

$$\begin{aligned} \mathsf{ATE} &= E\left(\left. Y_{1t} - Y_{0t} \mid X_t = x_0 \right) \right. \\ &= E\left(\left. Y_{1t} \mid X_t = x_0 \right) - E\left(\left. Y_{0t} \mid X_t = x_0 \right) \right. \\ &= \lim_{\epsilon \downarrow 0} E\left(\left. Y_t \mid X_t = x_0 + \epsilon \right) - \lim_{\epsilon \uparrow 0} E\left(\left. Y_t \mid X_t = x_0 + \epsilon \right) \right. \end{aligned}$$

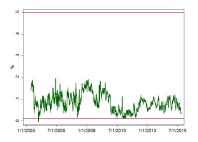
Last equality holds as long as conditional distribution of potential outcomes $\Pr\left(Y_{it} \leq y \mid X_t = x\right)$ is continuous at $X_t = x_0$, for $i \in \{0, 1\}$

RDD

We estimate:

$$(1) \underset{\theta}{\operatorname{arg\,min}} \sum_{j=1}^{J} \sum_{t=2}^{T-J} \left(y_{t+j} - a_j - b_j \left(X_t - x_0 \right) - \theta_j D_t - \gamma_j \left(X_t - x_0 \right) D_t \right)^2 \mathcal{K} \left(\frac{X_t - x_0}{h} \right)$$

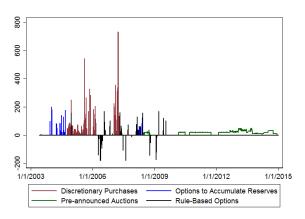
$$(2) \underset{\theta}{\operatorname{arg\,min}} \sum_{j=1}^{J} \sum_{t=2}^{T-J} \left(y_{t+j} - a_j - b_j \left(X_t - x_0 \right) - \theta_j D_t - \gamma_j \left(X_t - x_0 \right) D_t - \psi_j Int_t - \delta_j D_t Int_t \right)^2 K \left(\cdot \right)$$


- $\theta = (\theta_1, ..., \theta_J)'$ are impulse-response coefficients for D_t
- $\delta = (\delta_1, ..., \delta_J)'$ are impulse-response coefficients for $D_t Int_t$
- $K(\cdot)$ is a kernel function
- h is the bandwidth
- b_i, γ_i are polynomials

Endogenous relationship are broken down: small variations in X_t lead to small variations in the error term, which in turn generate a discontinuous jump in D_t

Data

Figure: Financial System's Foreign Exposure as % of Equity



- Effective lower (1%) bound (Jan 23, 2004 Oct 16, 2015)
- Total daily change in banks' foreign exposure (in terms of equity) was 1% between 2004-2015
- Running Variable: $\frac{1}{x_0} \frac{Net \ Short \ Term \ Assets \ (USD)}{Capital} < 1$,

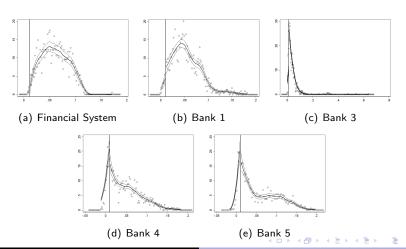

FX intervention

Figure: Official Foreign Exchange Intervention

No manipulation at cutoff

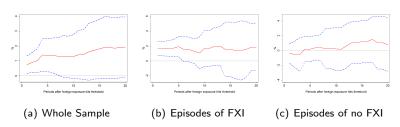
Figure: McCrary's (2008) Test

IRF's of Exchange rate (Δe_t)

Table: Correlation of Fundamentals with Treatment

VARIABLES	(1) All	(2) All	(3) BW=0.1	(4) BW=0.06	(5) BW=0.03
Running Variable (X _t)		-0.346**	-0.941**	-4.329***	-23.91***
(**!)		(0.145)	(0.380)	(1.475)	(4.001)
$\pi_t - \pi^*$	-0.712**	-1.218**	-1.703**	0.0778	3.407
	(0.311)	(0.514)	(0.701)	(0.658)	(16.84)
$e_t - \bar{e}$	0.394**	0.257**	0.242**	0.582*	2.432
	(0.169)	(0.110)	(0.107)	(0.347)	(3.080)
$i_t^{1y} - i_t^{1y*}$	0.318**	0.878**	1.275**	-0.744	-8.507
	(0.141)	(0.370)	(0.524)	(0.660)	(7.865)
Δy_t	-0.148**	-0.188**	-0.246**	-0.295**	-0.125
->t	(0.0636)	(0.0787)	(0.101)	(0.141)	(0.762)
FX Volt	-0.402**	-0.252**	-0.238*	-0.940*	-3.044
•	(0.173)	(0.109)	(0.128)	(0.567)	(5.765)
i _t *	-0.661**	0.303	0.749*	-3.285*	0.343
L	(0.306)	(0.195)	(0.398)	(1.714)	(16.83)
Embi	-0.0172**	-0.0133**	-0.0139**	-0.0427*	0.0884
	(0.00750)	(0.00581)	(0.00667)	(0.0242)	(0.119)
Observations	1,211	1,211	718	238	39
R-squared	0.053	0.080	0.125	0.291	0.676

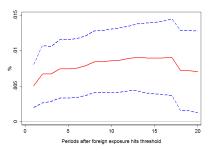
Authors' calculations. heteroskedastic-robust standard errors in parentheses. Each column shows a linear regression with treatment dummy $D_{\rm r}$ as dependent variable (constant term not reported). ***, **, and * denotes statistical significance at the 1, 5, and 10 percent level respectively.


IRF's of Exchange rate $(\%\Delta e_t)$

	Marginal Effect of D_t		Incremental Effect of INT_t		
Periods	Rectangular kernel	Triangular kernel	Rectangular kernel	Triangular kernel	
1	0.599*	0.655*	0.016	0.006	
	(0.307)	(0.341)	(0.016)	(0.008)	
2	0.713*	0.930**	0.053**	0.021	
	(0.384)	(0.418)	(0.021)	(0.014)	
3	1.153**	1.410**	0.087**	0.036	
	(0.535)	(0.467)	(0.036)	(0.022)	
4	1.652**	1.590**	0.052	0.027*	
	(0.569)	(0.414)	(0.034)	(0.015)	
5	ì.846**	ì.590**	0.015	0.012	
	(0.760)	(0.561)	(0.050)	(0.019)	
6	2.050**	ì.849**	0.061**	0.031*	
	(0.616)	(0.511)	(0.027)	(0.017)	
7	ì.448**	ì.267**	0.054**	0.028**	
	(0.585)	(0.468)	(0.011)	(0.012)	
10	0.474	0.193	0.055	0.018	
	(0.928)	(0.801)	(0.051)	(0.026)	
15	0.907	0.609	0.078	0.033	
	(1.271)	(1.173)	(0.063)	(0.032)	

Authors' calculations. Each coefficient results from a separate regression discontinuity model with optimal bandwidth from Calonico et al. (2014). Heteroskedastic-robust standard errors in parentheses. ***, **, and * denotes statistical significance at the 1, 5, and 10 percent level respectively.

IRF's of Exchange rate (Δe_t)


Figure: IRFs -Exchange rate changes

Portfolio shifts

We consider effects of banking limits on Loans for the five largest banks

Figure: $\frac{L_t^* e_t}{L_t}$: Loans (USD) as share of loans (COP)

Conclusion

Concluding remarks:

- 2-period tractable model: intervention has an effect on exchange rate when limits bind. Empirical exercise support this. Effects are relatively small and short lived.
- Same for the incremental effect of regulation based on the level of FXI.
- We find shifts in portfolio balances (loans) as a response to limits on foreign holdings.